

Water Science Through Physical, Conceptual, and Computational Modeling

Beth Covitt Agatha Podrasky

University of Montana

NAAEE – Spokane, WA – October 11, 2018

Agenda

- Project Introduction
- Groundwater Contamination Unit
- Try It Out
 - What determines how GW moves? (Head Tube Lab & Permeameter Lab)
 - Investigating with GW system models (Physical & NetLogo)
- Questions, Discussion

Project Goal

Integrate teaching & learning of environmental science w/computational modeling in authentic & innovative ways.

> Hydrology Concepts, Principles & Practices Practices Practices

Hydrologic Problems Context

What knowledge and practice are needed to make sense of and make or evaluate decisions about hydrologic problems such as groundwater contamination?

Partners

NATIONAL COMPUTATIONAL SCIENCE INSTITUTE

BEAR

Environmental Science Literacy

Capacity to understand & participate in evidencebased discussions and decision-making about socio-environmental issues.

Environmental science literate individuals can...

- Understand & evaluate arguments of experts
- Choose actions consistent with their values

Project Objectives

- 1. Develop modules
- 2. Develop/conduct teacher PD
- 3. Develop learning progressions
- 4. Investigate how to support use in classrooms
- 5. Develop digital platform for above objectives

Integrated Instruction & Research

Integrated Instruction & Research

Intertwined practices & disciplinary core ideas

Integrated Instruction & Research

Research Informs Instruction

Hydrologic Concepts

- Groundwater (GW) system structure
 - Unsaturated & saturated zone, water table, aquifer
- GW system function
 - Potential energy & hydraulic conductivity govern flow of GW & contaminants

Interpreting & Using Data

- Connect levels of abstraction across multiple scales
- Make inferences about 3D systems from 2D representations & vice versa
- Manage uncertainty
- Bringing scientific principles to bear

Computational Thinking

- Advantages & limitations of computer modeling
- Parameterization
- Discretization
- Boundary conditions
- Testing & falsifying models with observations

Learning Progressions

Descriptions of successively more sophisticated ways of thinking about a topic that can follow one another as children learn about and investigate a topic over a broad span of time. (National Research Council, 2007)

> Change in ways of talking, thinking, acting based how one views the world.

Upper Anchor

Scientific, Model-Based View of the World

Lower Anchor

Students' Initial View of the World

What Progresses

Water Systems Learning Progression

Level 4 – Qualitative Model-Based Reasoning System events follow mechanistic, model-based principles Atomic-Molecular to Landscape Scales

Level 3 – School Science Accounts

Events in order, Names processes Microscopic to landscape scales

Level 2 – Force Dynamic with Mechanisms

Actors, enablers, antagonists Macroscopic only

Level 1 – Simple Force Dynamic Accounts Water in isolated locations Human-centric

Septic Tank Assessment Example

The contour lines on the map to the right show the groundwater elevation above sea level (in meters).

The triangle represents a septic tank and drain field, and the circles show the locations of different wells.

If someone installed the septic tank incorrectly and septic wastes percolated into the groundwater, in which well would contaminated groundwater most likely be detected first?

Select one:

 D
 Е
 F
 G

Why would contaminated water be detected first in the well you chose?

Septic Tank Assessment Example

The contour lines on the map to the right show the groundwater elevation above sea level (in meters).

The triangle represents a septic tank and drain field, and the circles show the locations of different wells.

If someone installed the septic tank incorrectly and septic wastes percolated into the groundwater, in which well would contaminated groundwater most likely be detected first?

Select one:

___ D ___ E ___ F ___ G

Why would contaminated water be detected first in the well you chose?

L4: Indicates GW moves from high to low potential energy and/or addresses hydraulic head

"F. Because groundwater moves from high elevation to low."

L3: Indicates down hill or down elevation but does not specify GW not surface water "F. It is down hill from the septic tank."

L2: Strong proximity *"E. It's the closest to the septic tank."*

L1: Literal map reading "D. because it would go down."

Implications of Learning Progressions (LPs) for Research & Instruction

Research

 Develop integrated LPs for hydro reasoning, computational thinking, and data sense-making to inform...

Instruction

- (Unit) Provide students opportunities to engage in and develop sophisticated hydro reasoning, computational thinking, and data sense-making
- (PD) Provide teachers with tools and supports

NGSS Alignment

- **HS-ESS2-2:** Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems.
- **HS-ESS3-4:** Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.
- HS-ESS3-6: Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activities.
- **HS-ETS1-2:** Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
- **HS-ETS1-3:** Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints including cost ... as well as possible social, cultural and environmental impacts.
- **HS-ETS1-4:** Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems.

NGSS Alignment

Science Practices

- Developing and using models
- Analyzing and interpreting data
- Using mathematics and computational thinking
- Constructing explanations and designing solutions

Crosscutting Concepts

- Cause and effect
- Scale, proportion, and quantity
- Systems and systems models
- Energy and matter
- Structure and function

Building Connected Models

- Knowledge & practice through experiences w/ multiple models & representations
- Models & representations:
 - <u>Physical models</u> (table top GW flow model, 3D PVC pipe water table model)
 - <u>2D representations on paper (contour maps, cross-sections)</u>
 - <u>Conceptual scientific models</u> (principled explanations of how systems work)
 - <u>Computer models</u> (NetLogo models)
 - Do not delve deeply into mathematical models

Module 1: Establishing the Problem

Intro to E. Helena Smelter Site Case

Module 2: Intro to GW System & Flow

- L1: What is a system? & intro to GW
- L2: What determines how GW moves?
- L3: Cross section of East Helena Site
- L4: Intro to computer models of GW systems
- L5: NetLogo GW Flow Model

Module 3: Landscape Scale Water Table & Flow Direction of Water & Contaminants

- L1: Intro to investigation of East Helena with 3D modeling
- L2: Virtual investigation of East Helena using Google Earth
- L3: NetLogo contour map modeling of East Helena Plume
- L4: Computer modeling of GW & contaminant dispersion in East Helena

Intro to E. Helena Smelter Site Case

Module 2: Intro to GW System & Flow

- L1: What is a system? & intro to GW
- L2: What determines how GW moves?
- L3: Cross section of East Helena Site
- L4: Intro to computer models of GW systems
- L5: NetLogo GW Flow Model

Module 3: Landscape Scale Water Table & Flow Direction of Water & Contaminants

- L1: Intro to investigation of East Helena with 3D modeling
- L2: Virtual investigation of East Helena using Google Earth
- L3: NetLogo contour map modeling of East Helena Plume
- L4: Computer modeling of GW & contaminant dispersion in East Helena

Module 1: Establishing the Problem Intro to E. Helena Smelter Site Case Module 2: Intro to GW System & Flow (2D system) L1: What is a system? & intro to GW L2: What determines how GW moves? L3: Cross section of East Helena Site L4: Intro to computer models of GW systems L5: NetLogo GW Flow Model

Module 3: Landscape Scale Water Table & Flow Direction of Water & Contaminants

- L1: Intro to investigation of East Helena with 3D modeling
- L2: Virtual investigation of East Helena using Google Earth
- L3: NetLogo contour map modeling of East Helena Plume
- L4: Computer modeling of GW & contaminant dispersion in East Helena

Module 1: Establishing the Problem

Intro to E. Helena Smelter Site Case

Module 2: Intro to GW System & Flow

- L1: What is a system? & intro to GW
- L2: What determines how GW moves?
- L3: Cross section of East Helena Site
- L4: Intro to computer models of GW systems
- L5: NetLogo GW Flow Model

(3D, Large Scale)

Module 3: Landscape Scale Water Table & Flow Direction of Water & Contaminants

- L1: Intro to investigation of East Helena with 3D modeling
- L2: Virtual investigation of East Helena using Google Earth
- L3: NetLogo contour map modeling of East Helena Plume
- L4: Computer modeling of GW & contaminant dispersion in East Helena

Module 1: Establishing the Problem

Intro to E. Helena Smelter Site Case

Module 2: Intro to GW System & Flow

- L1: What is a system? & intro to GW
- L2: What determines how GW moves?
- L3: Cross section of East Helena Site
- L4: Intro to computer models of GW systems
- L5: NetLogo GW Flow Model

Module 3: Landscape Scale Water Table & Flow Direction of Water & Contaminants

- L1: Intro to investigation of East Helena with 3D modeling
- L2: Virtual investigation of East Helena using Google Earth
- L3: NetLogo contour map modeling of East Helena Plume
- L4: Computer modeling of GW & contaminant dispersion in East Helena

Module 1: Establishing the Problem

• Activity 1: There's a problem in East Helena

- History of E. Helena Smelter site & contamination

- Activity 2: Who cares?
 - Discuss stakeholders & their concerns
- Activity 3: What do we need to know?
 - Go back to 2009 & take on role of scientists to figure out what happened & what to do. Share ideas about what we need to know.

M2L1: What is a system?

- What is a system? (Formative Assessment)
- Define systems & preview types of system models & representations

M2L2: What determines how GW moves?

Investigation Stations

HEAD TUBE STATION

How can water underground flow uphill?

PERMEAMETER STATION

What affects how easily water can flow through different materials?

M2L2: What determines how GW moves?

Scientific Explanation of Hydraulic Head Height of the water in tubes shows...

Hydraulic head or total potential energy, which equals the amount of energy at a place in space that is a combination of...

Gravitational (positional) Energy

And Pressure Energy

Groundwater always moves in direction from higher hydraulic head (total potential energy) to lower hydraulic head.

Inflow-

M2L3: Cross Section of East Helena & GW Flow Model Experiments

Data

Qualitative Physical Model

M2L4: Intro to Computer Models

NetLogo — Grid_Flow_Energy {/Users/bethcovitt/Dropbox (CarbonTIME)/MT Comp Hydro/Octo Interface Info Code										
Edit Delete Add	normal speed				view updates continuous			Settings		
Setup	⊠ � \$	ticl	<s: 0<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>3D</td></s:>							3D
Go 🔁 Step	100	98	100	100	100	97	98	99	100	100
	95	92	97	99	97	94	91	92	90	93
On Place-water-randomly?	91	89	93	96	91	90	88	84	87	86
TOn Water-from-top-only?	85	83	89	88	84	85	82	80	82	83
On Record-pathways?	79	77	83	82	81	79	77	76	78	80
	72	73	75	77	75	71	72	73	74	75
	68	69	68	70	71	67	65	66	69	70
	63	64	65	66	63	64	62	61	66	67
	60	61	60	59	58	60	57	58	63	63
Potential Energies shown	53	58	57	56	53	56	53	54	59	60
Command Center										
bserver>										-

M2L5: NetLogo GW Flow Model

M3L1: Intro to E. Helena Investigation & 3D Model

M3L2: Virtual Investigation w/Google Earth

M3L2/L3: Contour mapping by Hand & Computer

M3L4: Computer Modeling of E. Helena

- Explore how computational modeling was used to develop remediation plan at site
- Jigsaw using videos of scientist who developed the model

M4: Addressing the Problem

- Teams evaluate cleanup options
- Explore NetLogo remediation strategy models
- Develop remediation plans
- Present plans
- Review what's being done in E. Helena

Try it out

 What determines how GW moves? (Head Tube Lab & Permeameter Lab)
 Investigation Stations

HEAD TUBE STATION

How can water underground flow uphill?

PERMEAMETER STATION

What affects how easily water can flow through different materials?

• Investigating with GW system models (Physical & NetLogo)

Load L Revert	▲ ◆ ticks: 80 3D	Calculate Head Field
hycon-red-15 58	9-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-	Convergence Delta
hycon-orange-25 34	10000000000000000000000000000000000000	Calculate Velocity Field
hycon-brown-35 0		Add Source 2
hycon-yellow-45 7 hycon-green-55 0		Clear Sources
hycon-sky-95 100		Trace flow 😰
hycon-blue-105 0		Clear Tracers
hycon-purple-115 100 Palette Paint		dispersion 13
paint-color 35		
15	,	

Questions / Discussion / Thank you

Contact

- Beth Covitt, <u>beth.covitt@umontana.edu</u>
- Agatha Podrasky, <u>agatha.podrasky@umontana.edu</u>

Unit materials available upon request

To learn more about Comp Hydro, visit: http://ibis.colostate.edu/comphydro/

This material is based upon work supported by the National Science Foundation DRL – 1543228 Comp Hydro: Integrating data computation and visualization to build model-based water literacy. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Generalized Environmental Science Learning Progression

Loval of		Elements of Accounts				
Achievement	Type of Account	Structure & Systems	Scale	Principles		
Level 4: Model- based accounts	Scientific, model- based explanations of how & why	Multiple, detailed & connected systems	Connected across atomic- molecular through large scales	Invoke scientific principles (e.g., driving forces, constraining factors)		
Level 3: Phenomenological (school science) accounts	Descriptions of what happens	Connected systems; visible & some hidden components	Spans micro to macro scale, some challenges linking scales	Address ordered events, named processes, & make use of "school rules"		
Levels 1 & 2: Force-dynamic accounts	Force-dynamic descriptions - actors fulfill purposes	Visible, familiar components of systems	Visible, macroscopic scale	Invoke actors' capacities & purposes as explanation		

Developing LPs for Comp Hydro

Table 1: Preliminary Construct Maps and Progress Variables					
Lower Anchor		Upper Anchor			
	(Informal Reasoning)	(Model-Based Reasoning)			
Water in Environmental Syste	ms (Gunckel et al., 2012)				
Structure & Systems	Water in isolated, visible systems only	Traces water through connected systems			
Scientific Principles	Invokes agents to move water	Identifies driving forces and constraints			
Scale	Macroscopic only	Atomic-molecular through large scale			
Representation	Disconnected from the physical world	Maps and cross-sections used as models			
Dependency & Agency	Water serves human needs only	Humans part of environmental systems			
Bringing Scientific Principles and Models to Bear in Making Sense of Data (Covitt, Dauer, & Anderson, In press)					
Answering Questions	Substitutes an easier question	Asks relevant scientific questions			
Patterns in data	Uses stories not statistics	Weds computational thinking with			
		knowledge of scientific models			
Validating Models	Uses confirmation bias	Falsifies and test models			
Explaining Events	Simple cause and effect	Recognizes mechanistic relationships			
Recognizing Uncertainty	False certainty	Uncertainty is reduced and managed			
Computational Modeling & Data Representation (based on preliminary explorations)					
Quantitative Reasoning	Qualitative descriptions of change;	Identifies trends quantitatively;			
	variability is human error	distinguishes variability & error			
Design and Modeling	Unconstrained brainstorming	Identifies relevant constraints;			
		parameterizes variables			
Problem-solving	One & done	Iterative & recursive approaches			
Simulation	Simulations disconnected from systems they model	Compares generated & empirical data			
Data Visualization	Concrete and physical models only	Uses different levels of abstraction			